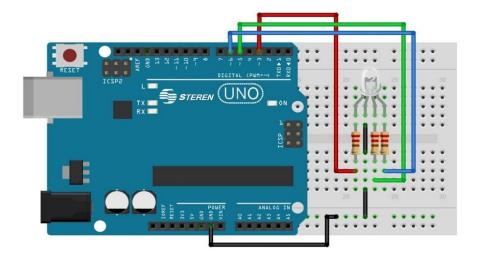
Practica 9. LED RGB PWM


Materiales		
Cantidad	Modelo	Foto
1	ARD-010 Arduino Uno	
1	USB-490 Cable USB A-B	
3	R220 1/2 Resistencia de carbón, de 1/2 watt, al 5% de tolerancia, de 220 ohms	
1	ARD-310 Cables Dupont	
1	5/RGB LED RGB	
1	ARD-335 Mini Protoboard	

Objetivo General.

Conectar un LED RGB mediante una secuencia en Arduino.

Diagrama de conexión

INSTRUCCIONES

- 1. Generar el código mediante los PINES para conectar el LED RGB a la placa Arduino.
- 2. Subir el código a la placa Arduino.
- 3. Realizar la conexión del LED RGB y las resistencias (las cuales protegen el LED) a la protoboard y a la placa Arduino.
- 4. Verificar el funcionamiento de los componentes de la protoboard y la placa Arduino conectados.

```
Código
PRACTICA No. 9 "LED RGB PWM"
*/
int r = 3;
            // Declaración del pin 3 de Arduino para el color Rojo.
            // Declaración del pin 5 de Arduino para el color verde.
int g = 5;
int b = 6;
            // Declaración del pin 6 de Arduino para el color Azul.
void setup() {
 /* Declaración de los pines como salidas. */
 pinMode (r, OUTPUT);
 pinMode (g, OUTPUT);
 pinMode (b, OUTPUT);
}
void loop() {
                 /* COLOR ROJO */
 for (int i = 0; i <= 255; i++){ // Bucle FOR, inicializa la variable "i" en 0 y la aumenta en uno hasta
255.
  analogWrite (r, i);
                           // Aumenta el color Rojo de acuerdo al valor de "i".
```



```
delay (10);
                         // Tiempo que tarda en aumentar el brillo del LED.
 for (int i = 255; i >= 0; i--){ // Bucle FOR, inicializa la variable "i" en 255 y la desciende en uno hasta
  analogWrite (r, i);
                            // Desciende el color Rojo de acuerdo al valor de "i".
  delay (10);
                          // Tiempo que tarda en descender el brillo del LED.
 }
                 /* COLOR VERDE */
 for (int i = 0; i <= 255; i++){ // Bucle FOR, inicializa la variable "i" en 0 y la aumenta en uno hasta
255.
                            // Aumenta el color Verde de acuerdo al valor de "i".
  analogWrite (g, i);
  delay (10);
                         // Tiempo que tarda en aumentar el brillo del LED.
 for (int i = 255; i >= 0; i--){ // Bucle FOR, inicializa la variable "i" en 255 y la desciende en uno hasta
  analogWrite (g, i);
                            // Desciende el color Verde de acuerdo al valor de "i".
                          // Tiempo que tarda en descender el brillo del LED.
  delay (10);
 }
                 /* COLOR AZUL */
 for (int i = 0; i <= 255; i++){ // Bucle FOR, inicializa la variable "i" en 0 y la aumenta en uno hasta
255.
  analogWrite (b, i);
                             // Aumenta el color Azul de acuerdo al valor de "i".
  delay (10);
                          // Tiempo que tarda en aumentar el brillo del LED.
 }
 for (int i = 255; i >= 0; i--){ // Bucle FOR, inicializa la variable "i" en 255 y la desciende en uno hasta
                             // Desciende el color Azul de acuerdo al valor de "i".
  analogWrite (b, i);
  delay (10);
                         // Tiempo que tarda en descender el brillo del LED.
 }
}
```

